LOYOLA COLLEGE (AUTONOMOUS) CHENNAI – 600 034

Date: 24-04-2025

M.Sc. DEGREE EXAMINATION - STATISTICS

THIRD SEMESTER - APRIL 2025

Dept. No.

Max.: 100 Marks

PST3MC01 - MULTIVARIATE ANALYSIS

Time: 09:00 AM - 12:00 PM										
SECTION A – K1 (CO1)										
	Answer ALL the questions $(5 \times 1 = 5)$									
1	Fill in the blanks									
a)	The multiple correlation coefficient, denoted as RRR, measures the strength of the relationship									
	between a dependent variable and independent variables.									
b)	The formula for Mahalanobis Distance measure is defined as									
c)	In a Repeated Measures design, the same subjects are tested multiple times under different									
d)	In Canonical Correlation Analysis, the primary objective is to maximize the between the									
	linear combinations of the two sets of variables.									
e)	is a diagrammatic representation of cluster formation in hierarchical clustering									
SECTION A – K2 (CO1)										
	Answer ALL the questions $(5 \times 1 = 5)$									
2	Definition									
a)	Cumulative distributive function.									
b)	Partial correlation coefficient.									
c)	Sphericity test.									
d)	Varimax rotation.									
e)	Discriminant analysis.									
	SECTION B – K3 (CO2)									
	Answer any THREE of the following $(3 \times 10 = 30)$									
3	If X is a 5x1 vector which is distributed as $N_5(\mu, \Sigma)$, find the distribution of $\begin{bmatrix} X_2 \\ X_4 \end{bmatrix}$.									
4	The following are the four measurement on the variables X_1 and X_2 .									
	X ₁ 42 52 48 58									
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
5	Explain the procedure of MANOVA and repeated measures design.									
6	Discuss varimax rotation and state its uses.									
	2 10 000 - William I Company to Good									

7				13 71	<u> </u>	91							
	Consider	the two da	taset $X_1 =$	$\begin{bmatrix} 2 & 4 \\ 7 & 8 \end{bmatrix}$,	$X_2 = \begin{bmatrix} 5\\4 \end{bmatrix}$	7 8	d S _{poo}	$_{1}=\begin{bmatrix}1\\1\end{bmatrix}$	$\begin{bmatrix} 1 \\ 2 \end{bmatrix}$. Cal	culate the linear			
	discriminant function classify the observations $x'_0 = \begin{bmatrix} 2 & 7 \end{bmatrix}$ and $\begin{bmatrix} 5 & 9 \end{bmatrix}$.												
	SECTION C – K4 (CO3)												
	Answer any TWO of the following (2 x 12.5 = 25)												
8	Discuss the sample correlation coefficient in a multivariate context, and elaborate its properties.												
9	How does Naïve Bayesian algorithm work for classification problem.												
10	Discuss MANOVA for comparing g population mean vectors in detail.												
11	Explain the procedure of k-means clustering and Pseudo F-statistic for optimizing the number of												
	clusters.												
SECTION D – K5 (CO4)													
	·												
										$(1 \times 15 = 15)$			
12	Obtain B	ivariate No	ormal dist	ribution fro	om multi	variate 1	orma	l densi	ty by su	abstituting p=2.			
13	Calculate	partial cor	relation co	oefficient r	13.2 using	Pearso	n corr	elation	approa	ch for the following data:			
	X_1	1	2	3	5	3		1	5				
	X_2	1	1	1	1	2		2	3				
	X_3	2	3	6	6	8	~~~	6	2				
				SEC	CTION E	– K6 (CO5)						
	Answer a	any ONE o	of the follo	owing						$(1 \times 20 = 20)$			
14	The follo	wing are th	ne measure	ements wit	h the vari	ables x	1, x ₂ a	nd x _{3:}					
	X 1	53	35	33	50	33		53	43				
	X2	49	44	50	47	52		44	50				
	X3	57	35	58	52	36		45	56				
	Estimate	the mean v	ectors, co	variance m	natrix and	correla	tion n	natrix.		(4+8+8)			
15	Find the o	clusters usi	ng averag	e linkage t	echnique	s. Use E	uclide	ean dis	tance aı	nd draw the dendrogram.			
			y	$\chi_1 = 0.40$	0 0.22	0.35	0.26		0.45				
			У	χ_2 0.5	3 0.38	0.32	0.19	0.41	0.30				

\$\$\$\$\$\$\$\$\$\$\$\$